
Productivity Engineering in the UNIXt Environment00

N

Design of the VORTEX Document Preparation System

Technical Report

< DTICSELECTE
UELECTES. L. GrahamOV 29 190 Principal In-,estigatorsKI.Di DD (415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089

August 7, 1984 - August 6, 1987

Arpa Order No. 4871 APR\O/KL F,- L'J :LE.-OE

tUNIX is a trademark of AT&T Bell Laboratories



Design of the VORTEX Document Preparation System

Peehong Chen

Computer Science Division
University of California

Berkeley, CA 94720

1 Introduction i--

VORTEX is an integrated document pteparation system capable of producing high quality output. Precisely
speaking, the major focuses of V'bt are the following:

Multiple Representations. Both source and target representations of a document will be maintained
and presented. The sourIce representation refers to a TEX document in its original unformatted form
and the target representation means its formatted result. The user can edit both representations using
a tezt editor and what is called a proof editor, respectively. Changes made to one representation will
propagate to the other automatically.

' Incremental Processing, The system will reformat a document and redisplay it on the screen incremen-
tally. That is, only the part of the document or the subregion of the screen that's affected 5y recent
changes will be reprocessed.

di User Interface. The system will be running on, but not restricted to, a workstation with a high reso-
lution bit-mapped display. It will have a high degree of interaction with the user. Unnecessary details
will be hidden especially in the proof editor whose major usage is to modify document appearance.
The user interface is so designed that in the case where only conventional terminals are available, the
system can still be used as an incremental "IE compiler.

2X Compatibility. Given a TIX file, )RTEX can produce a DVI file which generates the same printed
image as if a standard version of TEX had been run. This DVI file is 'equivalent to a standard DVI file
modulo \special commands".

Composite Objects. The system will support not only text, math, and tables, but also non-textual
objects such as graphics and raster images. There will be a high-level tool for each class of special
objects and all special tools will integrate with the base system coherently.

This report describes the initial design of VORTEX.

2 Architecture /

The VTEX system will be an integration of a number of modules sharing a common internal representation.,
(IR) for the document. Some of the important modules include a text editor, a formatter, a proof editr,
and a DVI generator. Each of these modules performs as least one transformation from one representation of
the document to another. The IR comprises three parts, call them IRs, IRT, and IRI, which correspond
to the internal representations of the source, target, and some intermediate information, respectively.

The display of VOTEX in a window-based system will have at least three windows: text window dis-

playing the source, proof window displaying the target, and message window for receiving input or displaying
messages. Different files of a document can be bound to separate buffers displayed in different subwindows

t i .-.

KI



as a tiled partition of the text window. In a conventional terminal display, there will only be a text window
and a message window; the proof window will be missing and its editor will be disabled.

The text editor is responsible for maintaining a window which displays the document in its unformatted
source form. It performs the mapping from the images displayed on the text window to IRS, its internal
representation, and vice versa. In addition to performing standard text editing operations such as insert and
delete, it also invokes the formatter upon the user's request. The formatter is a mapping from a source file
to IR (initial round), or from IR to IR', a reorganization of IR (later rounds).

After this transformation, the proof editor will be invoked which maps IRT to the physical screen
positions of the images. The primary purpose of this editor is maintaining a window which displays the
document in its target (formatted) form. Hence it also performs the mapping from screen positions to IRs,
but not IRT. This is because modifications to the document's output appearance must be translated to
the corresponding TEX code in the source representation, as represented by IRS. The correct structure for
IRT will only be generated by the formatter. Finally the DVI generator is a mapping from IRT to TX's
standard output format, the DVI representation.

There will be some special editors for non-textual objects such as tables, graphics, and raster images.
Specific argument syntax will be defined for TpX's 'hook', the \special command, so that particular objects
will always be manipulated by their corresponding editors. These will be direct manipulation editors which
are invoked whenever their respective objects are selected in the base editors.

This architecture is fundamentally different from the batch-oriented 'ThJX approach. To summarize the
differences, an evolution trilogy of the TEX environment is illustrated in Figure 1, which has the following
legend: boxes denote various representations of the document, circles represent processors, and an arrow from
A to B means either A has control over B or A can be transformed to B. In (a), the traditional batch-oriented
way of preparing TF) documents is shown. The user prepares the document using a text editor, executes
TEX. off-line, and finally previews or prints the DVI file, again off-line. Figure 3.1 (b) depicts an improved
TEX environment as reported in 131. Here all TEX related programs including tex, latex, slitex, astex,
the DVI previewer (dvitool), printer drivers, the bibliography preprocessor (bibtex), spelling checkers, etc.
are all integrated with GNU EMACS 191. The user executes everything in EMACS and although TpX itself
is still a batch job, some facilities are provided to simulate a simple form of separate compilation. The
previewer does not supply any editing functionality, however.

Finally Figure 3.1 (c) illustrates the VORTEX architecture. NtJEX's basic flow of control starts from the
text editor which constructs IRS from the source files. The formatted, when invoked, builds or reorganizes
IRI U IRT until the selected output page is encountered. Then IRT- is mapped to the screen as a formatted
page and the two base editors are activated. As editing goes along in both windows, changes will always
be reflected back to the IR5 and thus to the text window. If any of the special objects is selected, its
corresponding editor will be invoked. At any given time, the two windows may or may be synchronized
in terms of the images displayed. Explicit commands must be given in either window to make the two
representations and their respective screen images synchronized, which may involve some scrolling, or even
reformatting. If reformatting is required, the formatter is invoked and the whole process starts over again.

3 Internal Representation

There are two major problems which Volf'X's IR needs to face. One is the multiple representation problem;
our representation must provide the necessary correlation between the T)JX source which makes up the user
input (IRs) and the target page representation (IRr). The data structure must, as well, provide a means of
restricting changes to the document so that the formatter can recreate the minimum portion of the document
possible, making the TEX formatter incremental.

TEpX) stores information that is used in calculating line and page breaks, etc. in boxes, which don't
correspond in any obvious way with the source. The only real correlation is that if one types a letter (and
it's not part of a control sequence or some other command structure), it should be able to be found on some



(a) Traditional disintegrated TEX environment.

(b) An improved user environment for Tp2X.

(c) VWR'thX architecture.

Figure 1 Evolution trilogy of the TEX environment.



page of the output. We need to relate source tokens to output boxes through the IR in a much stronger
* way. Output boxes are nested; a character is contained within a line which is contained within a paragraph

which is contained within a page. We would also like to maintain this hierarchical organization with the
source, since characters and paragraphs have an obvious hierarchical structure in the source.

To allow the formatter to operate incrementally, we need a way of restricting the changes to a document
to minimize the amount of box rebuilding necessary. This is aided by a hierarchal organization, since with
one we can easily move upward to higher levels in the document. For example, if a word is added to a
paragraph, that paragraph needs to have line breaks recomputed, but the pages before the current one are
safe. Later paragraphs may have to be moved around, but unless they themselves change, their already
computed line breaks are safe.

3.1 The IR Hierarchy

The preceding considerations imply a hierarchical model and thus we chose the tree as the basic data
structure. Of course, we need to modify the standard tree paradigm to make it more useful for our purposes.
From the highest level, the JR for a document can be viewed as a tree of file nodes, each of which is the root
of a subtree whose leaves form the actual content of a source file as a chain of text (IRs). Embedded in this
gigantic forest is a box structure (IRT) which corresponds to the currently formatted pages. The file nodes
as well as several other types of nodes which are not part of IRS or IRT are collectively called the IRI.

Most nodes in the IR are doubly linked with their neighbors either horizontally, verti;cally, or both.
The primary reason for this strong connection is to make the propagation of changes, syntax-directed editing,
and incremental reformatting efficient. A substantial amount of work done previously by the formatter will
be saved in the IR, since it organizes the original text and the resulting boxes into a structure where changes
can easily be restricted. For instance, if the user changes a letter of a word in a paragraph, it is easy to
determine that only the line breaks of that paragraph will need to be recalculated and, if the change is simple
and the paragraph remains the same length, nothing else will need to be recomputed. The premise for this
optimization is based upon the context saved in the embedded IRT which is linked to the nodes in question.

3.2 What Lives In The IR?

The information that needs to be represented in the IR is the same as that which TEX uses in its horizontal,
vertical and math lists, with a few additions. IRS contains the simplest possible information: the actual
text. In addition, the target representation also needs to be related to it. At the target level, T7K only
knows about rules and characters, we generalize this to boxes so that we can maintain more output state
information (these boxes make up the IRT). In addition to the linking pointers, a box in IRT contains the
image and its position relative to the origin of a page. A box also contains a number of attributes such
as its dimension, the type and size of current font, etc. which can be queried or modified by the proof
editor. Another important piece of information is the TEX code which corresponds to certain operators for
modifying certain box attributes.

The formatter generates IR1 nodes on top of the IRs. For instance, the text {group) in the IRS
will be linked to a common ancestor node of type group in the IRI with a second IRI node of type word
pointing at the word group by the formatter. At the same time, all these IR, nodes will be related to the
IRT structure and vice versa. All boxes in the IRT have corresponding nodes in the IR1 , even though some
of them may not correspond to any obvious IRS text in the beginning. For instance, a page box in the IRT
will have an associted IRI node of type page as a result of formatting. The notion of formatted pages is
absent in the original source. The IR is extended here to make synchronous operations with respect to the
proof window possible. On the contrary, some IRI nodes may not have associated boxes in the IRT. For
example, a group node would have no output representation and therefore no box in the IRT.

So far we have seen four types of IR, nodes: file (\input), word, group ((... )), and page. Some
other types include space (blanks and comments), par (\par or blank lines), math and display (S and $$),
cseq (control sequence), special (\special), etc., which should all be self-explanatory. These nodes are the
minimum necessary given the structure of TEX documents. Others may be added later to make optimizations



for the formatter, but these are the least needed to describe a TFX document, and to relate the IRs and
the IRT. The IR2 along with the IRS and the IRT form the concerted whole, the IR, that will allow us to
overcome the multiple representation problem.

4 Functionalities

Generic operations for the two base editors include (1) sync, (2) insert and modify, (3) move, scroll, and
search, (4) select, (5) cut/paste, (6) attribute, and (7) file. These operations can be classified as destructive
or non-destructive. Destructive operations modify the IR and mark the corresponding nodes dirty while
non-destructive ones only traverse through IR, inspecting the node content. Among the generic operations,
(1), (2), and (5) are destructive, (6) and (7) may or may not be destructive, and the rest are non-destructive.

Sync is the command which invokes the formatter to bring the target representation up to date. As
mentioned earlier in Section 3.2, changes made to the proof window will propagate to the text window
immediately, but not to the proof window itself. In other words, any modifications dune in either editor
will only be reflected in the source window in real time. Some hints will be shown in the proof window to
indicate any images known to be dead. One technique considered is to paint the dead regions in a different
gray tone, but this can only be approximations because in many cases the scope of a dead region is very
hard to determine without reformatting.

Insertions will be modeless; text can be inserted at the current cursor position without having to invoke
any insert command. Modifications will be syntax-directed based on the IRI hierarchy. For instance, an
attempt to delete just one delimiter of a group ... ) will be prohibited because otherwise the remaining
text will be syntactically invalid.

The move type is a collection of cursor moving operations. VORTEX will support all of the standard
ones such as moving forward and backward either horizontally or vertically. Scrolling is a special case of
cursor motion. It can be either monolithic, affecting only one window, or synchronized, where both windows
are forced to display approximately the same text. The latter case may imply a sync opera .on if the two
representations are out of phase in terms of the content to be displayed. Yet another speci, case of cursor
moving is searching. A variety of searching schemes will be supported including ordinary search, regular
expression search, incremental search, and a very special kind called logical search. Logical searching allows
one to go to arbitrary pages, sections, chapters, or other logical entities in a formatted document easily and
will apply to the proof editor only.

A ring of selection buffers will be maintained. Structusral selection, correspond to traversing IRs U IRx
in the text editor or IRT in the proof editor. Starting from the lowest level, each additional select points
to a higher order object in the hierarchy. For example, one selects a word, two does it for a group, three
for a paragraph, etc. Arbitrary selections, on the other hand, selects consecutive chunks of text in either
IRS or IRT. That is, one explicitly sets a marker at one place and moves the cursor to a second, and the
text between the marker and current cursor position becomes a selection when the select command is called.
Each new selection pushes the old ones into a ring buffer. This buffer may be used by some operators like
cut/paste as implicit operands. Specific operators of the cut/paste type include erase (remove everything in
the current selection), copy (duplicate the current selection to another place), and move (a copy followed by
an erase).

Attribute operations are specific to the proof editor. There are primarily two types within this category:
query and modify. For each object selected, queries can be made on its attributes such as mode (math,
horisontal, etc.) font (type and size), dimension (height, width, depth), operators (cut, paste, etc.) and the
corresponding 7kX code (to be mapped back to the source), etc. Some of the attributes can be modified based
on the operators registered and the result will propagate to the IRS automatically. Operators registered for
IRT nodes are largely appearance fixing commands like change of margins, fonts, breaks, and glue.

Finally JUe operations like read and write are self-explanatory.



5 User Interface

From the user's point of view, there should be only one system with a uniform user interface rather than two
editors having two sets of protocols. Furthermore, it is a desirable feature that any functions be realized by
both mouse/menus and keyboard input. The primary reason for this consideration is that it makes VoRTEC
still useful even with only conventional terminals available. Given the complication, a variety of interesting
issues have emerged in the design of VoQX) user interface.

Standard cursor moving keystroke commands (e.g. C-f for forward, C-b for backward, C-p for up,
C-n for down) will be supported. An alternative is simply to drag the mouse and point at the desired
position. However, this technique is restricted to the current visible window. To access text outside the
current window, a scrolling facility must accompany the mouse dragging. Making selections is another good
example. For structural selections, one mouse click, for instance, selects a word, two consecutive clicks does
it for a group, three for a paragraph, etc. The keystroke version for this may be some special command
which takes an optional prefix argument as the indicator for the depth of traversing in the IR hierarchy.
Thus the command itself selects the word where the cursor is at, with prefix argument 1 it selects a group,
with 2 it does it for a paragraph, etc. In another case, scroll bars will be available for mouse lovers, but
conventional keystroke commands for scrolling will also be provided.

What is important here is that the same paradigm will work in both types of windows, although
the objects returned as a result of similar commands may be different. For example, three consecutive
mouse clicks in the proof editor may select the current page being displayed in its window while the same
command may return just the current paragraph in the source window. This is because some JR1 nodes
have no corresponding boxes in the 1RT, which is a footnote to the fact that the two editors are dealing with
two different representations. In particular, nodes like group, cseq, and file in the IRI may not have any
counterparts in the IiR,., so the same operations may select different objects in the two editors. Nontheless,
from the user's point of view, it suffices to have a uniform interface to the same generic operators because in
most cases such differnces are immaterial. The user can always select the desired object in the JR hierarchy
as long as its substructures are properly highlighted during a selection session.

6 lFormatting and Display

The key strategy in VoRTEX's incremental formatting (compiling) is the idea of a hybrid stream-based and
structure-oriented editing scheme which works on the IRS for linear reparsing and on the IRI hierarchy
for incremental skipping. Incremental compilers assume a priori the existence of an underlying internal
representation which must be created initially by a non-incremental process. VOR'TX's formatter plays the
dual role of constructing the IR initially and maintaining it afterwards. Its non-incremental part will also
be invoked whenever the incremental part finds itself unable to proceed, thereby providing a graceful escape
from any situations not supported for incremental processing.

After some destructive editing, some nodes in the IR will be marked dirty by the two base editors.
When sync is invoked, the formatter starts parsing from the leftmost dirty entry in the IR1 . As it goes
along, new IR, nodes will be created and new boxes will be generated and merged to the IRT. It will mark
an JRT- box as being one of the following types: same, relocate, new, or dead. The reason for this is to
provide the necessary information for the proof editor's redisplay algorithm to work incrementally.

The formatter will skip consecutive clean IR nodes as soon as the first entry with a corresponding
JRT box marked same is encountered. It resumes the computation upon reaching a dirty entry with the
necessary context retrieved from the IRT boxes linked to its neighbors. The formatting terminates at a point
when no dirty nodes are found in the remaining JRz hierarchy, or the selected page has been generated, or
an error is detected. At this point, if there are no errors found, the proof editor will be invoked to redisplay
its window. Otherwise the text editor will be positic-ned to the error spot and a diagnostic message will
appear in the message window. The user can then make fixes and reiterate the process.

The proof editor redisplays its window based on the type of the fR,- boxes visited. It starts from the
box which corresponds to the top of the selected page. It ignores any boxes marked same. Relocate boxes



will be copied to their destinations and new boxes will be rendered. Finally dead boxes will be erased. All
these will be executed using bit-blt operators 141, an efficient set of primitives for bitmap graphics. A similar
idea but much more complicated in magnitude has been implemented in Yale's PEN editor (2].

The text editor, on the other hand, is based on an ordinary textual window whose redisplay algorithms
are relatively well known [6,7]. VORTFX's text editor will take a similar approach in this respect.

7 Special Editors and Other Tools

VofrTE will support a direct manipulation editor for each class of special objects. Some of the classes being
considered include tables, graphics, raster images, and fonts. The table editor will allow the user to layout
tables either by specifying attributes (as in tbl or JAW) or by plagiarizing system-provided templates in
a stepwise fashion. Contents of the table may be filled or modified by pointing and clicking at the desired
entries. When all this is finished, the system will perform the necessary formatting and then display the
result. The graphics editor will be object-oriented similar to MacDraw in functionality. In an object-oriented
world entities are each manipulatable based on predefined methods bound to a particular type or one of the
type's superclasses. This is fundamentally different from editors like MacPaint where displayed objects are
treated as plain bitmaps. The raster editor is a bitmap editor that allows one to draw free hand pictures or
to fine tune rasters such as digitized images. As a special-purpose raster editor, the font editor can be used
to tune special fonts that are difficult for METAFONT [8] to produce, such as a seal or a logo.

Other pre- or postprocessors for handling bibliographies, cross references, and indices will be provided in
VORTFX. The EMACS-based TEX environment of Figure 3.1 (b) has demonstrated the feasibility of integrating
such functions with an editor [31 in terms of bibliography preprocessing. Cross referencing and indexing are
more complicated because some postprocessing relative to the formatting is required. But based on the
proposed incremental formatting strategy, it is possible to define new control sequences as part of the kernel
and have symbolic references resolved as early as possible.

8 System Dependence and Portability

VORTEX will be implemented in C on the SUN workstation. The host window system is still being evaluated;
the two candidates being considered are SunView I1 and the X window system [5]. Since VORTEX is not
intended to be a commercial product, portability is not a central issue here. However, cares will be taken in
the implementation to isolate system dependent features and to restrict them to the minimum.

9 References

I1] Sun View Programmer's Guide, Release A of 17. Sun Microsystems, Mountain View, California, Febru-
ary 1986.

121 Todd Allen, Robert Nix, and Alan Perlis. PEN: a hierarchical document editor. In Proc. of the A CM
SIGPLAN/SIGOA Symposium on Tezt Manipulation, pages 74-81, Portland, Oregan, June 8-10 1981.
Available as SIGPLAN Notices 16(6) or SIGOA Newsletter 2(1-2).

[3] Peehong Chen, Michael A. Harrison, John Coker, Jeffrey W. McCarrell, and Steve Procter. An
improved user environment for TEX. In Proc. of the second European Conference on TEX for Scientific
Documentation, Strasbourg, France, June 19-21 1986.

(4] James D. Foley and Andries van Dam. Fundamentals of Interactive Computer Graphics. Addison-
Wesley Publishing Company, Reading, Massachusetts, 1982.



151 Jim Gettys and Ron Newman. Xlib - C Language X Interface: Version 9. MIT Project Athena,
Cambridge, Massachusetts, 1985.

161 James Gosling. A redisplay algorithm. In Proc. of the ACM SIGPLAN/SIGOA Symposium on Tezt
Manipulation, pages 123-129, Portland, Oregan, June 8-10 1981. Available as SIGPLAN Notices
16(6) or SIGOA Newsletter 2(1-2).

17] B. S. Greenberg. The Multics Emacs Redisplay Algorithm. Technical Report, Honeywell Inc., 1979.

(8] Donald E. Knuth. The METAFONT Book. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1986. In press.

[9] Richard M. Stalman. GNU Emacs Manual, Fourth Edition, Version 17. Free Software Foundation,
Cambridge, Massachusetts, February 1986.


